Using Stable Isotope Techniques to Investigate Carbon Cycle Dynamics of an Agricultural Ecosystem

BY

JIANMIN ZHANG

Advisor: Tim J. Griffis & John M. Baker

Tuesday, September 25, 2007
1:30 pm
306 Borlaug Hall

Abstract:

Ecosystem-scale estimation of photosynthesis and respiration using micrometeorological techniques remains an important, yet difficult, challenge. This study examines the application of stable isotope techniques to partition the net ecosystem CO₂ exchange into its component fluxes for an agricultural ecosystem. Continuous measurements of the mixing ratios of ¹²CO₂ and ¹³CO₂ with tunable diode laser (TDL) absorption spectroscopy were combined with micrometeorological observations to partition the net ecosystem CO₂ exchange into photosynthesis and respiration in a corn-soybean rotation ecosystem for the summer 2003 corn phase. The dynamics of the canopy-scale isotope discrimination, isotope ratios of ecosystem respiration and net ecosystem CO₂ exchange, and isoflux were examined using both TDL data and a modified multilayer canopy model.