Impacts of land management on the greenhouse gas budget of two alternatively managed agroecosystems

by

Travis Bavin
Soil Science

Advisors: Timothy J. Griffis and John M. Baker

Friday, April 11, 2008
9:30 am
375 Borlaug Hall

ABSTRACT

It has been postulated that conservation tillage can increase carbon (C) sequestration in agricultural ecosystems. However, C cycling and the impact of management on other relevant greenhouse gas fluxes need to be better understood before it can be concluded that conservation tillage can be used to potentially offset some of the rise in atmospheric carbon dioxide (CO$_2$) levels. The goal of this research, therefore, was to improve the understanding of how C cycles through maize/soybean agroecosystems and to evaluate whether tillage has an impact on CO$_2$, N$_2$O, and CH$_4$ losses. Four key questions were addressed:

1. Can changing from a conventionally tilled system to reduced tillage system impact soil respiration (R_S), ecosystem respiration (R_E) and N$_2$O and CH$_4$ fluxes?
2. What conditions are responsible for the largest rates of R_S, R_E, N$_2$O, and CH$_4$ loss/uptake?
3. Does soil water content and temperature differ between treatments, and how does R_S, R_E, and N$_2$O, and CH$_4$ fluxes respond to changes in soil water content and temperature?
4. Does the ratio of R_S to R_E differ between treatments and seasons?

During 2004 and 2005, R_S, R_E, N$_2$O, and CH$_4$ fluxes, along with relevant environmental variables, were measured on two alternatively managed agroecosystems at the University of Minnesota Rosemount Research and Outreach Center. Over two years, cumulative R_E was 222.7 g C m$^{-2}$ higher in the reduced-tillage treatment. N$_2$O fluxes were similar in both treatments during the 2004 growing season and were significantly higher in the conventionally tilled treatment during 2005. CH$_4$ losses were negligible in both treatments. When compared to CO$_2$ losses, N$_2$O and CH$_4$ fluxes were small components of the greenhouse gas budgets of both systems. Differences in soil temperature and water content, however, could not completely explain the differences in cumulative C and N$_2$O losses between the two treatments. Increased residue decomposition and N fertilization were the main factors driving differences in CO$_2$ and N$_2$O fluxes in both systems in 2004 and 2005.